
groupedSurv
Efficient Estimation of Grouped Survival Models Using the Exact

Likelihood Function

2020-01-31

1 / 19

Introduction

▶ This document provides examples demonstrating how to use the
groupedSurv package to estimate the baseline survival rate,
covariate, and fixed effect parameters, and compute the efficient
score statistic, as well as gene-level statistics for grouped survival
models.

▶ Additional functions can analyze grouped time-to-event data
accounting for family structure of related individuals (e.g., trios),
and provide estimates of frailty variance. Note, however, that the
current implementation of the frailty model is sensitive to departures
from model assumptions, and should be considered experimental.

▶ The major algorithms in this package are written in C++, which is
ported to R by Rcpp, to facilitate fast computation.

2 / 19

Model assumptions
Data without family structure [1]
▶ The input data is assumed to be organized as a matrix or

data.frame, with rows corresponding samples, and columns
corresponding to variables of interest (and covariates) for the sample.

▶ Support is also provided for GenABEL gwaa.data objects as
alternative inputs.

Data with family structure [2] [Experimental]
▶ The input matrix or data.frame is assumed to be organized such

that records for each family occur consecutively, and that records for
offspring precede those for parents. The variance matrix for the
random effects is assumed to be of the form var∗K, where K is a
matrix of kinship coefficients between family members.

▶ The following family groupings are permitted: (Individual),
(Offspring, Offspring), (Offspring, Parent), (Offspring, Parent,
Parent), and (Offspring, Offspring, Parent, Parent). Other family
structures have not been implemented.

3 / 19

Included functions

Functions for data without family structure

thetaEst(Z=NULL, gtime, delta, method="BFGS")
betaEst(x, Z=NULL, alpha, theta=NULL, gtime, delta)
groupedSurv(x, Z=NULL, GenABEL.data=NULL, alpha, theta=NULL,

gtime, delta, beta=0, nCores=1, reScore=FALSE)
geneStat(x, Z=NULL, GenABEL.data=NULL, alpha, theta=NULL,

gtime, delta, beta=0, nCores=1,
FUN=function(Uij, weight){sum((colSums(Uij)*weight)^2)}, geneSet)

Functions for data with family structure [Experimental]

alphaEstFam(gtime, delta)
betaEstFam(x, fam_group, fam_role, alpha, var, gtime, delta, lower, upper)
varEstFam(x, fam_group, fam_role, alpha, gtime, delta, lower, upper, beta = 0)
groupedSurvFam(x, fam_group, fam_role, alpha, var, gtime, delta, beta=0)
varLLFam(x, fam_group, fam_role, alpha, var, gtime, delta, beta=0)

4 / 19

Usage overview

Most users will interface with the package through the thetaEst() and groupedsurv() functions.
The thetaEst() function provides maximum likelihood estimates (MLE) for the nuisance
parameters, i.e., the baseline survival rate and the parameters for any covariates. The estimates
are computed under the null hypothesis, i.e., that the variable of interest has no effect on the time
to event. The thetaEst() function requires a vector of grouped survival times, gtime and a vector
of event indicators, delta, as arguments. If the model includes covariates, these values, in the
form of a matrix or data.frame, Z, are required as well. Optionally, users can specify the method
of optimization (method = “BFGS” or “CG”) which is passed to the optim function in C++.

The groupedSurv() function is the core of the groupedSurv package. As inputs, it requires a
matrix or data.frame of variables to be tested for association with the outcome, x, a vector of
grouped survival times and a vector of event indicators (gtime and delta), as well as estimates for
the nuisance parameters (alpha and theta). Note that since thetaEst() estimates the nuisance
parameters under the null hypothesis, these estimates can be reused to calculate the efficient score
statistic for any number of variables of interest. If the model includes covariates, the Z matrix or
data.frame is also required. In the context of GWAS, covariates and variables of interest can be

provided as part of a GenABEL object (gwaa.data), with the arguments x and Z instead used to
specify to the columns of gwaa.data to be included in the analyses.

5 / 19

Usage overview

Users also have the option of specifying the number of cores available for parallel processing
(nCores). The beta argument is 0 by default, computing the statistics under the null hypothesis,
but users have the option of specifying a different value, e.g., in order to evaluate the statistic
under an alternative hypothesis.

By default, the package returns a data frame containing the efficient score statistics, along with
the (unadjusted) asymptotic p-values, FWER-adjusted p-values [3] and local FDRs [4, 5] for each
of the variables of interest. By setting the optional argument reScore=TRUE, the groupedsurv()
function will also return a matrix of the contribution of each sample to the efficient score statistic
for each variable of interest.

A supporting function, betaEst(), takes a vector of values of a variable of interest, x, along with
the same arguments as the thetaEst() function, and returns the MLE of the log hazard ratio, β.

Please refer to the individual function manuals for more detailed explanations of the arguments
and returned values associated with each function.

6 / 19

A note about coding grouped survival times

Under the grouped failure time model, the continuous survival time, time ∈ [0, ∞) is not
observed. Instead, subjects are assessed for failure only at pre-specified time points,
gtime1, gtime2, . . . , gtimer−1. These time points form the right end-points of r adjacent intervals,
i.e., [0, gtime1), [gtime1, gtime2), . . . , [gtimer−2, gtimer−1)[gtimer−1, ∞).

The contribution of each subject to the likelihood used in the efficient score is composed of the
combination of the intervals they survived and, if applicable, that in which the event occurred. For
example, a subject who survives the first two intervals (i.e.,has not failed at gtime1 or gtime2) but
then has failed by the third observation should be coded as (gtime= gtime3, delta= 1). Similarly,
a subject who has not yet failed at the fourth observation time, but who is lost to follow-up before
the fifth observation time would be coded as (gtime= gtime5, delta= 0).

Note then that subjects who are censored at the first time point, (gtime= gtime1, delta= 0),
contribute no information to the likelihood. Note also that subjects who have not failed by the
final observation time point should be considered censored at infinity, and coded (gtime=Inf,
delta= 0).

7 / 19

Simulate grouped survival data
We first simulate continuous survival data:

set.seed(111)
n <- 1000
effect size
beta <- 0.3
covariate parameters
theta <- c(0.2, 0.2)
variable of interest associated with outcome
MAF <- 0.05
x <- matrix(rbinom(n, 2, MAF), ncol = 1)
additional variables of interest
xMore <- matrix(rbinom(n*100, 2, MAF), ncol = 100)
xMore <- cbind(x, xMore)
covariate data (centered at 0)
z1 <- rnorm(n)
z2 <- rbinom(n, 1, 0.5) - 0.5
Z <- matrix(cbind(z1, z2), ncol = 2)
continuous survival time
lam0 <- 1
cmax <- 3
lami <- lam0 * exp(x * beta + Z %*% theta)
stime <- rexp(n, lami)
ctime <- runif(n, 0, cmax)
delta <- stime < ctime
otime <- pmin(stime, ctime)

8 / 19

Generate grouped survival data
Then generate grouped survival times from continuous survival data:

grouped observation time points
ntps <- 5
r <- ntps + 1
last observation time
maxbreakq <- 0.85
maxbreak <- qexp(maxbreakq, lam0)
grouped survival times
breaks <- (1:ntps) * (maxbreak/ntps)
gtime <- findInterval(otime, breaks) + 1
delta[gtime == r] <- FALSE
dctime <- findInterval(ctime, breaks) + 1
delta[gtime == dctime] <- FALSE
delta <- as.numeric(delta)
gtime[which(gtime == r)] <- Inf
table(gtime, delta)

delta
gtime 0 1
1 124 287
2 78 167
3 53 81
4 51 53
5 21 29
Inf 56 0

9 / 19

Example of thetaEst

Load groupedSurv (after installing its dependent packages):

library(groupedSurv)

Estimate θ (including baseline survival rate for each time interval and the covariate parameters)
under the null hypothesis (β = 0):

thetaest <- thetaEst(Z, gtime, delta)
thetaest

10 / 19

Examples of groupedSurv and betaEst

Compute the efficient score under the null hypothesis based on the estimated θ :

eff <- groupedSurv(x=xMore, Z=Z, alpha=thetaest$alpha, theta=thetaest$theta,
gtime=gtime, delta=delta, beta=0, nCores=1)

head(eff)

One may wish to estimate β for variables of interest found to be associated with the outcome:

betaest <- betaEst(x=x, Z=Z, alpha=thetaest$alpha, theta=thetaest$theta,
gtime=gtime, delta=delta)

betaest

11 / 19

Examples of alternative data sources
One can alternatively input SNP information directly from a GenABEL object.

library(GenABEL)
data(srdta)
GenABELdat <- srdta[1:n]
snpsToTest <- GenABELdat@gtdata@snpnames[1:200]
eff <- groupedSurv(x=snpsToTest, Z=Z, GenABEL.data=GenABELdat,

alpha=thetaest$alpha, theta=thetaest$theta,
gtime=gtime, delta=delta, beta=0, nCores=1)

Genotype data can be imported from binary PLINK [6] file using the BEDMatrix package.

library(BEDMatrix)
path <- system.file("extdata", "example.bed", package = "BEDMatrix")
m <- BEDMatrix(path)
Extract genotypes for the specified variants
xPLINK <- m[, c("snp0_A", "snp1_C", "snp2_G")]

Or, genotype dosage data can also be directly extracted from a VCF file using the
VariantAnnotation package [7].

system("wget ftp://share.sph.umich.edu/minimac3/DosageConvertor/DosageConvertor.v1.0.4.tar.gz")
system("tar -xzvf DosageConvertor.v1.0.4.tar.gz")
library(VariantAnnotation)
exampleVcfFile <- "./DosageConvertor/test/TestDataImputedVCF.dose.vcf.gz"
myvcf <- readVcf(exampleVcfFile, "hg19")
dosedat <- assay(myvcf,"DS")
xVCF <- t(dosedat)

12 / 19

Analysis of gene sets

Specify SNP and gene information:

geneInfo <- data.frame(gene=c("BRCA1","BRCA2"), chr=c(17,13),
start=c(41196312, 32889611), end=c(41277500, 32973805),
stringsAsFactors=FALSE)

snpInfo <- data.frame(chr=c(17,17,13,13), pos=c(41211653,41213996,32890026,32890572),
rsid=c("rs8176273","rs8176265","rs9562605","rs1799943"),
stringsAsFactors=FALSE)

Use snplist package to create gene sets:

library(snplist)
setGeneTable(geneInfo)
setSNPTable(snpInfo)
geneset <- makeGeneSet()

geneset

13 / 19

Simulate SNP data and compute statistics

Simulate genotyping data:

G <- matrix(rbinom(n*nrow(snpInfo), 2, 0.5), ncol=nrow(snpInfo))
colnames(G) <- snpInfo$rsid

SNPs can be weighted within gene sets. Generate dummy weights and append them:

for(i in seq_len(length(geneset))){
weight <- rep(1, length(geneset[[i]]))
geneset[[i]] <- list(geneset[[i]], weight)

}

Compute SKAT statistics for each gene set:

res <- geneStat(x=G, Z=Z, alpha=thetaest$alpha, theta=thetaest$theta,
gtime=gtime, delta=delta, geneSet=geneset)

res$stat

14 / 19

Incorporating family structure

Generate grouped survival data:

rm(list=ls())
set.seed(111)
m <- 10

family ID
fgrp <- as.character(rep(1:m, each=3))

role within family
f_ind <- rep(c('o','f','m'),m)

grouped survival data
gtimes <- sample(1:4, m*3, replace=TRUE)
deltas <- sample(0:1, m*3, replace=TRUE)

variable of interest
g <- rbinom(m*3, 2, 0.1)

parameter search bounds
upper <- 2
lower <- 0

15 / 19

Examples of alphaEstFam and varEstFam

Estimate baseline survival rates (always under the null hypothesis):

alphaest <- alphaEstFam(gtimes, deltas)
alphaest

Estimate variance under the null by setting beta=0:

varest <- varEstFam(x=g, fam_group=fgrp, fam_role=f_ind, alpha=alphaest,
gtime=gtimes, delta=deltas, lower, upper, beta=0)

varest

16 / 19

Examples of groupedSurvFam, PvalueFam, and
betaEstFam

Compute the efficient score under the null by setting beta=0, and compute the associated
p-values:

effFam <- groupedSurvFam(x=g, fam_group=fgrp, fam_role=f_ind, alpha=alphaest,
var=varest, gtime=gtimes, delta=deltas, beta=0)

PvalueFam(effFam)

Estimate β:

betaEstFam(x=g, fam_group=fgrp, fam_role=f_ind, alpha=alphaest,
var=varest, gtime=gtimes, delta=deltas, lower, upper)

17 / 19

References

[1] Prentice, RL and Gloeckler, LA (1978). Regression analysis of grouped survival data with
application to breast cancer data. Biometrics, 34(1):57-67.

[2] Ripatti, S and Palmgren, J (2004). Estimation of multivariate frailty models using penalized
partial likelihood. Biometrics, 56(4):1016-1022.

[3] Bonferroni, CE (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del
Professore Salvatore Ortu Carbon, 13-60.

[4] Storey, JD (2013). The positive false discovery rate: a Bayesian interpretation and the
q-value. Annals of Statistics, 31(6):2013-2035.

[5] Storey, JD, Taylor, JE, and Siegmund, D (2004). Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: a unified
approach. Journal of the Royal Statistical Society Series B-Statistical Methodology,
66:187-205.

[6] Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MAR, Bender, D, Maller, J, Sklar,
P, de Bakker, PIW, Daly, MJ, and Sham, PC (2007). PLINK: a toolset for whole-genome
association and population-based linkage analysis. American Journal of Human Genetics, 81.

[7] Obenchain, V, Lawrence, M, Carey, V, Gogarten, S, Shannon, P, and Morgan, M (20014).
VariantAnnotation: a Bioconductor package for exploration and annotation of genetic
variants Bioinformatics, 30(14):2076-2078.

18 / 19

Session Information

▶ R version 4.4.2 (2024-10-31), x86_64-pc-linux-gnu
▶ Running under: Ubuntu 24.04.1 LTS
▶ Matrix products: default
▶ BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
▶ LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;

LAPACK version3.12.0
▶ Base packages: base, datasets, grDevices, graphics, methods, stats, utils
▶ Other packages: groupedSurv 1.0.5.1, knitr 1.49
▶ Loaded via a namespace (and not attached): R6 2.5.1, Rcpp 1.0.13-1, buildtools 1.0.0,

cli 3.6.3, codetools 0.2-20, colorspace 2.1-1, compiler 4.4.2, doParallel 1.0.17, dplyr 1.1.4,
evaluate 1.0.1, fansi 1.0.6, foreach 1.5.2, generics 0.1.3, ggplot2 3.5.1, glue 1.8.0, grid 4.4.2,
gtable 0.3.6, highr 0.11, iterators 1.0.14, lifecycle 1.0.4, magrittr 2.0.3, maketools 1.3.1,
munsell 0.5.1, parallel 4.4.2, pillar 1.9.0, pkgconfig 2.0.3, plyr 1.8.9, qvalue 2.39.0,
reshape2 1.4.4, rlang 1.1.4, scales 1.3.0, splines 4.4.2, stringi 1.8.4, stringr 1.5.1, sys 3.4.3,
tibble 3.2.1, tidyselect 1.2.1, tools 4.4.2, utf8 1.2.4, vctrs 0.6.5, xfun 0.49

19 / 19

	Introduction
	Example with covariates
	Examples of alternative data sources
	Analysis of gene sets
	Example with family structure
	References
	Session Information

